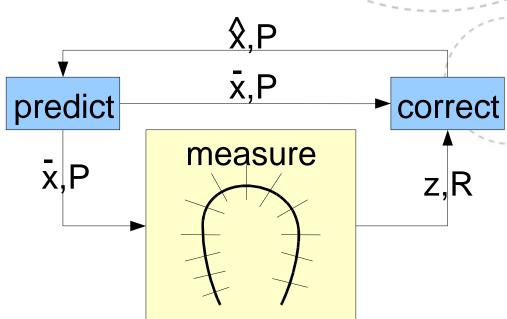
Innovation and Creativity

A Framework for Real-time Left Ventricular tracking in 3D+T Echocardiography, Using Nonlinear Deformable Contours and Kalman Filter Based Tracking

Fredrik Orderud

Norwegian University of Science and Technology (NTNU)


Outline

- Approach
- Prior art
- Contour model
 - Formulation
 - Used in paper
- Local edge detection
- Measurement sequence
- Kalman filter implementation
- Experiment
 - Objective
 - Results
 - Examples
- Discussion & conclusion

Approach

- Treat LV tracking as a sequential state estimation problem.
- Use a deformable contour as LV model.
 - Assign certain deformation parameters.
- Perform local edge detection in proximity to the shape.
- Track deformation state using a Kalman filter.
 - Allows for real-time implementation.

Prior Art

- Andrew Blake, Michael Isard et al. [2-4]
 - Real-time tracking of deformable B-spline contours using Kalman filters.
- Gary Jacob, Alison Noble et al. [5-7]
 - Usage of Blake's framework for left ventricular tracking in 2D echocardiography.

[2] Blake A, Curwen R, Zisserman A. A framework for spatiotemporal control in the tracking of visual contours. International Journal of Computer Vision 1993;11(2):127–145.
[3] Blake A, Isard M, Reynard D. Learning to track the visual motion of contours. Artificial Intelligence 1995;78(1-2):179–212.

[4] Blake A, Isard M. **Active Contours**. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1998. ISBN 3540762175.

- Limitations
 - Restricted to tracking in 2D image sequences.
 - Restricted to linear shape deformations, like e.g. principal component analysis (PCA) models.

[5] Jacob G, Noble JA, Mulet-Parada M, Blake A. **Evaluating a robust contour tracker on echocardiographic sequences**. Medical Image Analysis 1999;3(1):63–75.

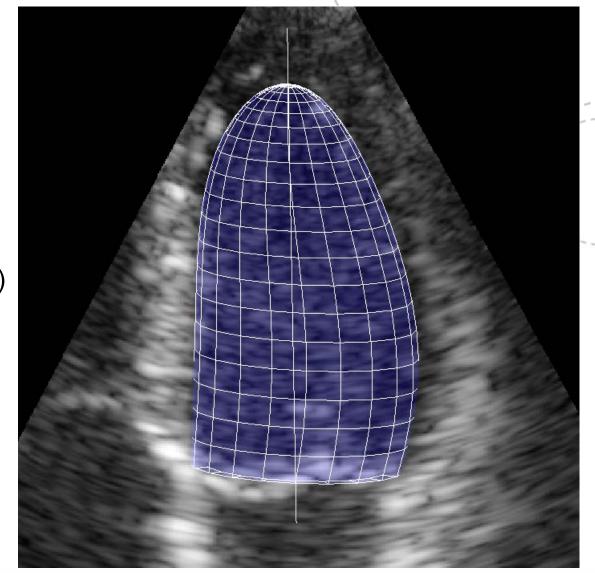
[6] Jacob G, Noble JA, Kelion AD, Banning AP. **Quantitative regional analysis of myocardial wall motion**. Ultrasound in Medicine Biology 2001;27(6):773–784.

[7] Jacob G, Noble JA, Behrenbruch CP, Kelion AD, Banning AP. **A shape-space based approach to tracking myocardial borders and quantifying regional left ventricular function applied in echocardiography**. IEEE Transactions on Medical Imaging 2002;21(3):226–238.

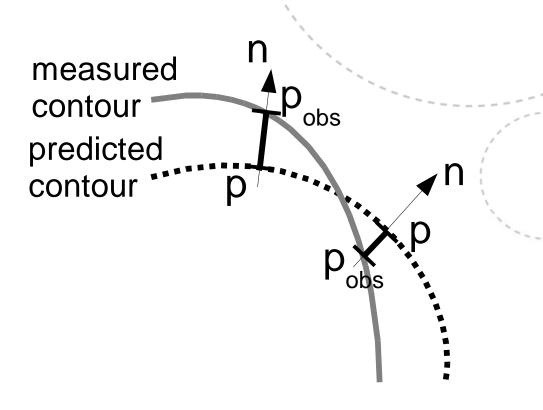
Contour Model (1/2)

- Contour template
 - Prior shape model for the contour being tracked.
 - Set of surface points, with associated surface normals

 p_0, n_0

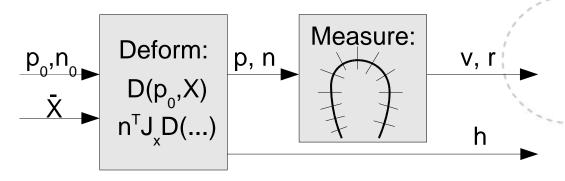

- Deformation model
 - General nonlinear formulation $p = D(p_0, X)$
 - Deforms points on contour template based on a shape state vector.
 - Function must be differentiable wrt. the shape state.

Contour Model (2/2)


- Truncated ellipsoid
- Deformation parameters:
 - Translation (t_x, t_y, t_z)
 - Rotation/orientation (r_x, r_y)
 - Scaling (s_x, s_y, s_z)
 - "Bending" (c_x, c_y)

10 degrees of freedom.

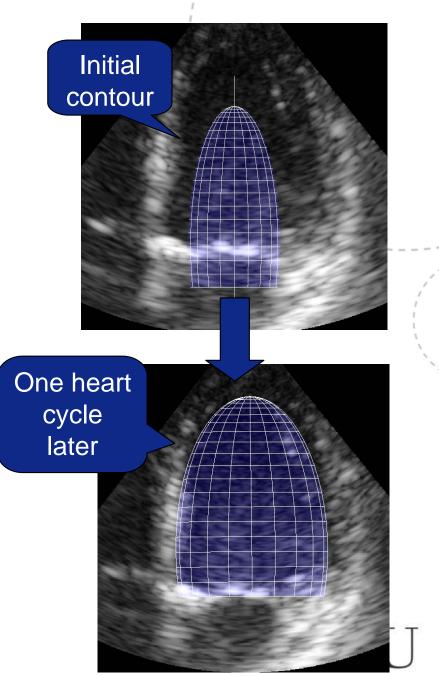
Local Edge Detection


- Perform edge detection in *normal direction* of contour surface.
- Calculate the normal displacement between predicted and measured contour points
- Dimensionally invariant.

Measurement Sequence

- 1. Create contour template
- 2. Calculate deformed contour, and associated Jacobi matrix based on predicted state.
- 3. Measure *normal displacements* based on deformed contour.

Kalman Filter Implementation


- Using an *extended* Kalman filter for tracking
 - Enables usage of nonlinear deformation models.
 - Linearizes model around predicted state.
- Kinematic prediction
 - Augment state vector to contain state from last two successive frames.
 - Models motion, in addition to state/position

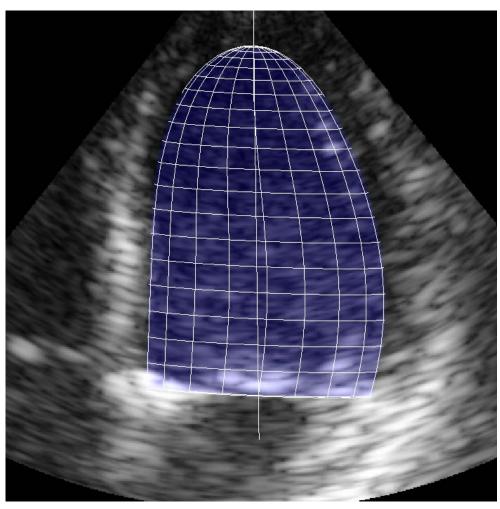
- Measurement update in information space
 - Assumption of independent measurements allow efficient implementation
 - Create information-vector and matrix from measurements
 - Use information filter formulation of Kalman filter for measurement update.

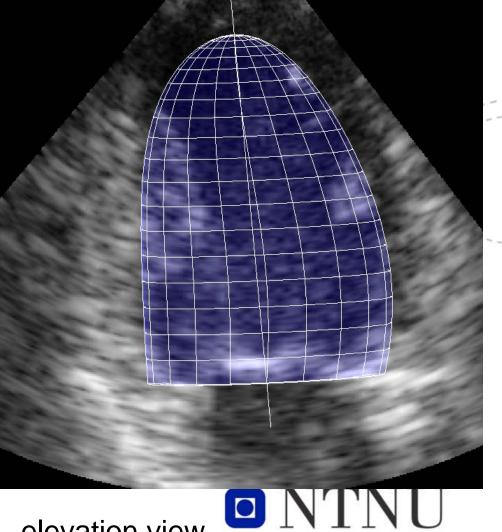
Experiment

- Objective:
 - Evaluate *feasibility* of method to automatically track the dominant left ventricular motion and shape changes
- Data:
 - Collection of 21 3D echocardiography recordings of good quality
 - Initial contour automatically placed at 80mm depth in first frame of every recording

Innovation and Creativity

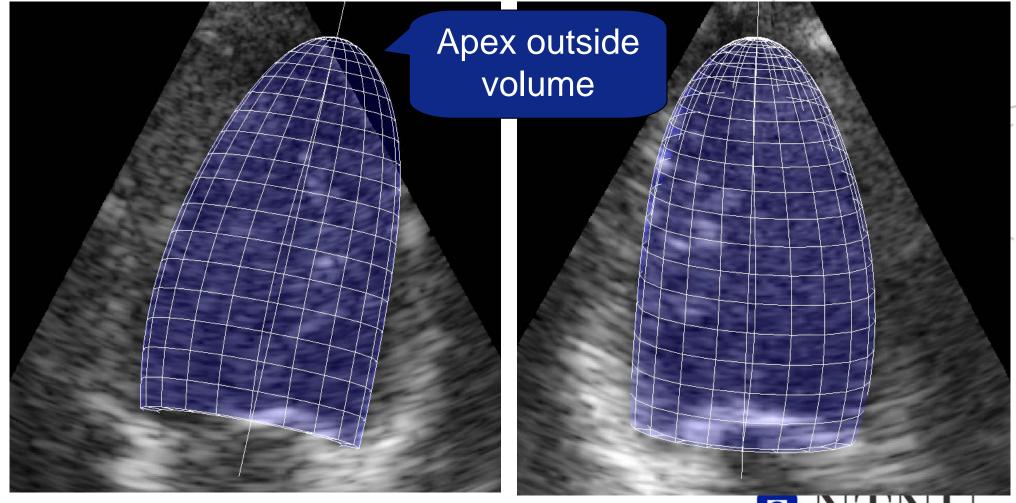
Results


 Goal is to get a crude approximation to LV size, position and orientation


Quality	Count	Description
Good	16	Tracking performed well
Adequate	3	Tracking with reduced accuracy
Fair	1	Tracking with low accuracy
Poor	1	Unable to automatically track

 Subjectively scored by author.

Tracking Example (1/2)


azimuth view

elevation view

Innovation and Creativity

www.ntnu.no

Tracking Example (2/2)

azimuth view

Innovation and Creativity

www.ntnu.no

Discussion (1/2)

Advantages:

- Allows for real-time LV-tracking in 3D echocardiography
- Fully automatic. No user intervention required
- Yields "crude" LV position, size and orientation.
- Disadvantages
 - Not an accurate segmentation technique.

Real-time tracking in 25fps 3D echocardiography recordings yields a modest *CPU load of approx. 18%* on a Pentium 4 computer.

Discussion (2/2)

- Framework allows for more advanced deformation models
 - Needs not be linear
 - Ellipsoid model can be replaced with a more realistic biomechanical model.
 - This is likely to yield better model fitting, and hence improve tracking accuracy.

Acknowledgements

- Stein Inge Rabben
 - GE Vingmed Ultrasound
 - Current supervisor
- Sigmund Frigstad
 - GE Vingmed Ultrasound
 - Datasets used for training
- Brage Amundsen
 - Norwegian University of Science and Technology (NTNU)
 - Datasets used for method validation in this paper

